Multiple tolerance defects contribute to the breach of B cell tolerance in New Zealand Black chromosome 1 congenic mice
نویسندگان
چکیده
Lupus is characterized by a loss of B cell tolerance leading to autoantibody production. In this study, we explored the mechanisms underlying this loss of tolerance using B6 congenic mice with an interval from New Zealand Black chromosome 1 (denoted c1(96-100)) sufficient for anti-nuclear antibody production. Transgenes for soluble hen egg white lysozyme (sHEL) and anti-HEL immunoglobulin were crossed onto this background and various tolerance mechanisms examined. We found that c1(96-100) mice produced increased levels of IgM and IgG anti-HEL antibodies compared to B6 mice and had higher proportions of germinal center B cells and long-lived plasma cells, suggesting a germinal center-dependent breach of B cell anergy. Consistent with impaired anergy induction, c1(96-100) double transgenic B cells showed enhanced survival and CD86 upregulation. Hematopoietic chimeric sHEL mice with a mixture of B6 and c1(96-100) HEL transgenic B cells recapitulated these results, suggesting the presence of a B cell autonomous defect. Surprisingly, however, there was equivalent recruitment of B6 and c1(96-100) B cells into germinal centers and differentiation to splenic plasmablasts in these mice. In contrast, there were increased proportions of c1(96-100) T follicular helper cells and long-lived plasma cells as compared to their B6 counterparts, suggesting that both B and T cell defects are required to breach germinal center tolerance in this model. This possibility was further supported by experiments showing an enhanced breach of anergy in double transgenic mice with a longer chromosome 1 interval with additional T cell defects.
منابع مشابه
Functional interplay between intrinsic B and T cell defects leads to amplification of autoimmune disease in New Zealand black chromosome 1 congenic mice.
Genetic loci on New Zealand Black (NZB) chromosome 1 play an important role in the development of lupus-like autoimmune disease. We have shown previously that C57BL/6 mice with an introgressed NZB chromosome 1 interval extending from approximately 35 to 106 cM have significantly more severe autoimmunity than mice with a shorter interval extending from approximately 82 to 106 cM. Comparison of t...
متن کاملB Cell Activating Factor (BAFF) and T Cells Cooperate to Breach B Cell Tolerance in Lupus-Prone New Zealand Black (NZB) Mice
The presence of autoantibodies in New Zealand Black (NZB) mice suggests a B cell tolerance defect however the nature of this defect is unknown. To determine whether defects in B cell anergy contribute to the autoimmune phenotype in NZB mice, soluble hen egg lysozyme (sHEL) and anti-HEL Ig transgenes were bred onto the NZB background to generate double transgenic (dTg) mice. NZB dTg mice had ele...
متن کاملFunctional dissection of lupus susceptibility loci on the New Zealand black mouse chromosome 1: evidence for independent genetic loci affecting T and B cell activation.
In previous work, we demonstrated linkage between a broad region on New Zealand Black (NZB) chromosome 1 and increased costimulatory molecule expression on B cells and autoantibody production. In this study, we produced C57BL/6 congenic mice with homozygous NZB chromosome 1 intervals of differing lengths. We show that both B6.NZBc1(35-106) (numbers denote chromosomal interval length) and B6.NZB...
متن کاملThe Lbw2 locus promotes autoimmune hemolytic anemia.
The lupus-prone New Zealand Black (NZB) strain uniquely develops a genetically imposed severe spontaneous autoimmune hemolytic anemia (AIHA) that is very similar to the corresponding human disease. Previous studies have mapped anti-erythrocyte Ab (AEA)-promoting NZB loci to several chromosomal locations, including chromosome 4; however, none of these have been analyzed with interval congenics. ...
متن کاملDefects in antigen-specific immune tolerance in continuous B cell lines from autoimmune mice.
B cell hyperactivity and resistance to tolerance induction are well-recognized immunologic abnormalities associated with both human and murine models of systemic lupus erythematosus. Studies evaluating the role of B cells in these defects have been complicated by the difficulties of consistently isolating large numbers of B cells from T cells and other host-derived regulatory factors. We have r...
متن کامل